Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(9): 1126-1138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278715

RESUMO

Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus-host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography-tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.


Assuntos
Lisina , Vírus de RNA , Citrato (si)-Sintase , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
ACS Appl Mater Interfaces ; 15(15): 19349-19361, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37036936

RESUMO

To address the shortcomings of traditional filler-based wearable hydrogels, a new type of nanochannel hydrogel sensor is fabricated in this work through a combination of the unique structure of electrospun fiber textile and the properties of a double network hydrogel. Unlike the traditional Ti3C2Tx MXene-based hydrogels, the continuously distributed Ti3C2Tx MXene in the nanochannels of the hydrogel forms a tightly interconnected structure similar to the neuron network. As a result, they have more free space to flip and perform micromovements, which allows one to significantly increase the electrical conductivity and sensitivity of the hydrogel. According to the findings, the Ti3C2Tx MXene nanochannel hydrogel has excellent mechanical properties as well as self-adhesion and antifreezing characteristics. The hydrogel sensor successfully detects different human motions and physiological signals (e.g., low pulse signals) with high stability and sensitivity. Therefore, the proposed Ti3C2Tx MXene-based hydrogel with a unique structure and properties is very promising in the field of flexible wearable devices.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Cimentos de Resina , Condutividade Elétrica
3.
Phytopathology ; 112(2): 299-307, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34033505

RESUMO

Autophagy is an evolutionarily ancient process wherein cells are able to break down intracellular contents to support normal physiology and development. Autophagosome formation is regulated by several different proteins, including the key cysteine protease Atg4. The contribution of Atg4 protein in the pathogenic fungus Cryphonectria parasitica, which causes blight in chestnut plants, has not been completely understood. In this context, we aimed to investigate the role of Atg4 during autophagy formation and their contribution to nonautophagic events in C. parasitica. By complementation assay, we determined that the CpAtg4 gene from C. parasitica was able to functionally complement the deletion of yeast Atg4. Using a yeast two-hybrid assay system, we confirmed that CpAtg4 and CpAtg8 directly interact with one another, and amino acids 377 to 409 of CpAtg4 were identified as being responsible for its binding with CpAtg8. The deletion mutant of CpAtg4 did not demonstrate positive monodansylcadaverine staining, which indicated that CpAtg4 is required for autophagy in C. parasitica. Moreover, the ΔCpAtg4 strain exhibited a decrease in aerial hyphae formation and sporulation, and reduction in virulence on apple and chestnut stem. The ΔCpAtg4 strains were also more sensitive to H2O2 and Congo red-induced stress. We further determined that amino acids 377 to 409 of CpAtg4 were essential for the function of CpAtg4 in vivo. Together, our findings indicated that CpAtg4 is required for the autophagy formation, fungal phenotypic traits, stress tolerance, and virulence in C. parasitica.


Assuntos
Ascomicetos , Peróxido de Hidrogênio , Ascomicetos/genética , Autofagia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...